
 A NEW APPROACH TO
 GRAPHQL FEDERATION
 Anant Jhingran

 The Case for GraphQL Federation 1

 Different Ways of Approaching Federation 4

 Query-based Stitching 5

 Object-based Stitching 6

 StepZen’s Implementation of Query-based Stitching 8

 Evolution 11

 Independence of Concerns 11

 Performance 11

 Governance 12

 Security 12

 Considering StepZen for Federation 12

 As an Alternative to Apollo Federation 12

 As a Subgraph Provider to Apollo Federation 12

 As a Flexible “Any Layer of the Graph” Technology 13

 Summary 13

 A NEW APPROACH TO GRAPHQL FEDERATION

 GraphQL federation is a critical element of your GraphQL architecture. Federation is
 about assembling the work of independent teams (with GraphQL APIs that represent
 their domain(s)) into one, or possibly a few, uber GraphQL APIs.

 In this paper, we make a case for GraphQL federation and describe the two approaches
 for stitching graphs together—one based on queries, the other based on objects. Then
 we discuss how StepZen builds out the query-based stitching model in a simple
 declarative way and the advantages it gives from code, performance, and governance
 perspectives.

 We end the paper with considerations and potential next steps for you to evaluate a
 federation model that’s right for your organization.

 The Case for GraphQL Federation
 In many organizations, APIs are built around organizations or domains. For example, a
 B2C retail business might have customer APIs, e-commerce APIs, marketing APIs, and
 so on. These APIs are typically built by semi-independent teams, and usually have
 some common lightweight structures (like authentication, documentation, etc.), but
 otherwise are constructed independently. And they might appear in the same portal for
 the API consumer, but there is nothing that connects them.

 Because GraphQL APIs are designed to “stitch” data together, GraphQL represents an
 opportunity to connect APIs easily—even those built by independent teams (see A New
 Architecture for APIs in The New Stack).

 Copyright © 2022 StepZen Inc. All Rights Reserved. 1

https://thenewstack.io/a-new-architecture-for-apis/
https://thenewstack.io/a-new-architecture-for-apis/

 A NEW APPROACH TO GRAPHQL FEDERATION

 A GraphQL API can answer a query like this: listing all the products a customer has
 bought and the date they bought them:

 {
 customer (email: “ john.doe@example.com ”) {

 name
 purchased {

 orderedOn
 name

 }
 }

 }
 }

 The above snippet stitches customer and order data into one response. The API to
 support this GraphQL query might be built by one team, or it might be an assembly of
 the work of many teams. For the GraphQL API consumer, it does not matter. They get
 an endpoint that has the data stitched together. This stitching, at its core, is a merge of
 JSON objects (with both customer data and order data, coming from the respective
 backends being JSON objects themselves), resulting in a new JSON object. The end
 result is a JSON object that has the shape of the query.

 With this core capability of GraphQL, a simple federation architecture can be built—it is
 just a tree of graphs, with each subgraph (or a set of subgraphs) managed by different
 teams.

 Copyright © 2022 StepZen Inc. All Rights Reserved. 2

mailto:john.doe@example.com

 A NEW APPROACH TO GRAPHQL FEDERATION

 Figure 1. A simple federation architecture: A graph of graphs

 You get a set of combined APIs at whatever level you want, and you get independence
 wherever you want. This is simply not possible in REST APIs without a lot of work. In
 GraphQL, it is natural.

 Copyright © 2022 StepZen Inc. All Rights Reserved. 3

 A NEW APPROACH TO GRAPHQL FEDERATION

 Different Ways of Approaching Federation
 Let us look at the simplest graphs to support the query above:

 Customer Subgraph Order Subgraph

 Types type Customer {
 id: ID!
 name: String!
 ...

 }

 type Product {
 id: ID!
 name: String!
 orderedOn: Date!

 }

 Queries type Query {
 customer(id: ID!):

 Customer
 ...

 }

 type Query {
 productsByCustomer

 (customerId: ID!): [Product]
 ...

 }

 Table 1. Customer and Order Subgraphs

 A federation implementation must be able to present to the user a GraphQL schema
 that looks like this:

 Federated

 Types type Customer {
 id: ID!
 name: String!
 purchases:[Product]

 }
 type Product {

 id: ID!
 name: String!
 orderedOn: Date!

 }

 Queries type Query {
 customer(id: ID!): Customer
 purchasesByCustomer (customerId: ID!): [Product]
 ...

 }

 Table 2. Federated View of the Graph

 Copyright © 2022 StepZen Inc. All Rights Reserved. 4

 A NEW APPROACH TO GRAPHQL FEDERATION

 The choice of which queries and fields of the two types to expose is up to the federation
 tier, but for simplicity here, we are exposing all of them in order to focus on the stitching
 logic. The key question is: how is the execution of the Customer.purchases:
 [Product] specified so that the federation tier does the right thing?

 Let’s examine the two alternatives: query-based stitching and object-based stitching.

 Query-based Stitching
 StepZen uses query-based stitching. In this model, an edge from type A to type B is
 built entirely by type A , using a query on type B . The syntax is:

 extend type Customer {

 purchases:[Product]

 @materializer (query: “purchasesByCustomer”,

 arguments: [{name: “customerId”, field: “id”}])

 }

 Fundamentally, Customer.purchases data is generated by executing the query
 purchasesByCustomer from the Order subgraph, passing in the Customer.id field as
 the argument customerId in the query. In this world, there is no requirement that the
 query into the Order subgraph must be based on some primary key of the enclosing
 type. One could instead have (assuming that the Customer has a zipcode), create a
 new field like this:

 extend type Customer {

 popularInNeighborhood:[Product]

 @materializer (query: “popularByZipcode”,

 arguments: [{name: “zipcode”, field:

 “zipcode”}])

 }

 Both of these queries (purchasesByCustomer and popularByZipcode) are completely
 unaware of who might use them. Of course, type Customer uses them, but we could
 have a type Stock in the SupplyChain subgraph that could also use them. The
 responsibility for stitching lies with the enclosing type, not the enclosed type.

 Copyright © 2022 StepZen Inc. All Rights Reserved. 5

 A NEW APPROACH TO GRAPHQL FEDERATION

 Furthermore, all access controls mechanisms that apply to queries/mutations are
 available here. Performance optimization is also much simpler. Take caching, for
 example. Two customers in the same zip code will have the same value for
 popularInNeighborhood. A query-level cache solves the caching problem.

 Object-based Stitching
 Apollo uses object-based stitching. In this model, fields of type A are populated from
 multiple subgraphs. Given the federated schema in Table 2, a Customer object will get
 its name from the Customer subgraph, and purchases from the Order subgraph.
 However, unless the two sides agree on some unique identifier, how can the right data
 be fetched and the correct data be stitched?

 That is why object-based stitching requires some unique identifiers. So one might say

 Customer Subgraph
 type Customer @key (fields: “id”) {

 id: ID!

 name: String!

 }

 Order Subgraph
 type Customer @key (fields: “id”) {

 id: ID!

 purchased: [Product]

 }

 Copyright © 2022 StepZen Inc. All Rights Reserved. 6

 A NEW APPROACH TO GRAPHQL FEDERATION

 Now, data from the two subgraphs can be stitched together, but with the following
 conditions:

 ● Now, the Order subgraph must know about the type it is stitching into. (In
 contrast, in query-based stitching, it is entirely unaware of its use.) Furthermore,
 it must not produce any other field that conflicts with the Customer subgraph
 except for the id field. And it must name types etc. all the same. Consequently,
 there must be significant coordination between the teams building the two
 subgraphs.

 Because there are specific cross dependencies between the two sides,
 implementations like Apollo add extra directives like @external , @provides ,
 @shareable, etc. This allows tools and federation code to be smarter about
 reasoning but imposes an extra burden on the teams building the subgraphs.
 Apollo has decent libraries to manage these, but if teams are not using Apollo, or
 doing it in different languages, then this becomes especially burdensome.

 ● Each side must also implement specially named resolvers that take the “ id ”
 value and return data. The reason for special naming is that the federation code
 can call the right queries on either side.

 ● Caching of results is the responsibility of the subgraphs. If we look at the zipcode
 example above, two customers in the same zip code have the same data for
 popularInNeghborhood ; however, because it will be generated by a special id
 based resolver, the caching cannot be done at the federation tier. It must be
 implemented in the subgraphs.

 Further discussion of object-based stitching or its Apollo implementation is beyond the
 scope of this paper. We invite you to do your own comparisons with StepZen’s
 implementation of query-based stitching.

 Copyright © 2022 StepZen Inc. All Rights Reserved. 7

 A NEW APPROACH TO GRAPHQL FEDERATION

 StepZen’s Implementation of Query-based Stitching
 Having built database query engines in the past, we at StepZen are taking our best
 learnings from the database world and building a new query engine for GraphQL.

 StepZen takes a declarative approach to building graphs. A subgraph is formed by
 connecting the appropriate data source using one of StepZen’s GraphQL declarative
 constructs (GraphQL directives). You can:

 ● Connect to a REST/SOAP/OData backend using @rest

 ● Connect to a SQL/NoSQL backend using @dbquery

 ● Connect to a GraphQL backend using @graphql (and this is what enables easy
 federation).

 Then, a graph of graphs is formed by connecting the data in one graph with a
 query/mutation in another using @materializer . This is the equivalent of href in this
 world. Because @materializer does not care how each subgraph that it connects has
 been built, the structure of a federated graph is the same as the structure of a subgraph.

 Copyright © 2022 StepZen Inc. All Rights Reserved. 8

https://stepzen.com/docs/connecting-backends

 A NEW APPROACH TO GRAPHQL FEDERATION

 For example, a team might build a graph like this:

 Figure 2. Two subgraphs + one supergraph built using @dbquery, @rest, and @materializer

 Subgraph1 represents the customer domain (this graph is easily generated using
 stepzen import curl).

 Subgraph2 represents the order domain (this graph is easily generated using stepzen
 import postgresql).

 And the graph of graphs is assembled by connecting subgraph2 to subgraph1 —
 passing data from Customer to Order , and taking the returned JSON and stitching it
 into the Customer object in a new field called orders . Simple, right?

 The same approach leads to a simple yet powerful GraphQL federation model.

 Copyright © 2022 StepZen Inc. All Rights Reserved. 9

 A NEW APPROACH TO GRAPHQL FEDERATION

 Assume that instead of one team that is building out both the customer and order
 domains, there are two teams that have each built out their domain. The technology
 they use does not matter—they could build it in StepZen, like above, or choose Apollo,
 Hasura, Kotlin, or another.

 Figure 3. Graph of graphs to build federation

 Here, Subgraph1, representing the customer domain, is available at
 https://customers.acme.com/graphql .

 Also, Subgraph2, representing the order domain, is available at
 https://orders.acme.com/graphql .

 The graph of graphs is built by creating two proxies on the customer and order
 subgraphs. With StepZen, this is accomplished with one command— stepzen import
 graphql . These proxies fetch data from the corresponding subgraphs using @graphql .

 Copyright © 2022 StepZen Inc. All Rights Reserved. 10

https://customers.acme.com/graphql
https://customers.acme.com/graphql

 A NEW APPROACH TO GRAPHQL FEDERATION

 And for the federation layer, they look like subgraphs that are local to the construction of
 the graph of graphs; hence the same @materializer can be used to stitch things
 together.

 Furthermore, because the graphs are built and stitched declaratively, StepZen can do
 optimizations like 1+N, caching, pushdowns, etc. And this is recursively true if the
 subgraphs are built with StepZen. A declarative approach leads to simpler code and
 much better runtime characteristics.

 A declarative approach leads to simpler code, and better runtime characteristics
 with built-in optimizations like 1�N, caching, and pushdowns.

 In addition to the technical issues discussed above, StepZen’s federation model has the
 following advantages:

 Evolution
 Going from one team to a “team of teams” is trivial. You keep the @materializer code
 aside, split the rest of the code, create two subgraphs out of it, proxy the subgraphs
 using stepzen import graphql , and throw in your stitching code back in the
 federation layer. Nothing changes. See our website for more information on how to
 facilitate teams with federation.

 Independence of Concerns
 Each subgraph GraphQL service is blissfully unaware of the other. The orders subgraph
 does not know that it is being federated into the customer subgraph. The only thing that
 subgraph should care about is what API it exposes further up the chain. How that API is
 used to federate is not its concern. Keeps the n-square problem from happening at all.

 Performance
 StepZen’s declarative approach allows us to analyze and optimize the execution of the
 subqueries. We can batch the queries as needed for subgraphs (we detect whether
 these subqueries take singletons or a batch), and we can and do insert caching at
 various layers.

 Copyright © 2022 StepZen Inc. All Rights Reserved. 11

https://stepzen.com/why-stepzen#facilitate-teams-with-federation

 A NEW APPROACH TO GRAPHQL FEDERATION

 Governance
 Each subgraph can have its own naming convention. It can have its own
 authorization/authentication. Because StepZen has sophisticated @rest capabilities and
 our @graphql is a layer on top of @rest , we can be flexible in mapping different
 structures, names, and access controls into the federation layer.

 Security
 GraphQL implementations (including StepZen’s) have some powerful security
 mechanisms for governing who can call what queries with what parameters.
 Query-based stitching automatically and easily uses the same mechanisms to protect
 the edges. In contrast, object-based stitching must implement this at the special @key
 resolver level, requiring entirely new mechanisms, which are typically not easily built.

 Considering StepZen for Federation
 We have described the StepZen approach to federation and why it delivers concisely
 coded, performance-optimized, well-governed, and secured federation implementations.
 As you evaluate what’s right for your business, we propose a few ways in which you can
 consider StepZen for federation.

 As an Alternative to Apollo Federation
 Set up a StepZen account, run the stepzen import graphql command against each
 of your graphs, and if needed, connect them using @materializer . Examine the code
 complexity, and download this performance tool to verify the performance of your
 system.

 As a Subgraph Provider to Apollo Federation
 If you have decided on Apollo federation, use StepZen to create a lot more
 subgraphs—with stepzen import curl , stepzen import mysql, stepzen import
 postgresql , or with a few lines of declarative code, you can turn any API or database
 into a graph.

 Copyright © 2022 StepZen Inc. All Rights Reserved. 12

https://github.com/stepzen-dev/stepzen-graphql-benchmark

 A NEW APPROACH TO GRAPHQL FEDERATION

 And then you can federate it in Apollo. StepZen subgraphs are automatically
 composable into Apollo—there are no new libraries to add, no new types or
 enhancements to build.

 As a Flexible “Any Layer of the Graph” Technology
 StepZen has customers excited about how simple and flexible our graph of graph
 approach is. While attracted by this translating into a simpler federation, they soon build
 REST and other enhancements into this layer.

 In this way, they future-proof themselves for schema and organizational evolution.

 Summary
 Larger organizations need a way of managing their API sprawl. GraphQL APIs have a
 natural federation model built-in. There are two approaches to federation:

 Query-based stitching
 In query-based stitching (which StepZen uses), the edge from type A to type B is
 entirely built by type A, using a query on type B. This leads to concisely coded,
 performance-optimized, well-governed, evolvable, and secured federation
 implementations.

 Object-based stitching
 In object-based stitching (which Apollo uses), subgraphs contribute fields to the same
 type. This leads to more complex code and difficulty with governance, security, and
 performance optimizations. How subgraphs are built and how they are stitched together
 are different, resulting in more complex evolutions.

 Furthermore, StepZen can be the federation layer, or it can slide underneath your
 current federation layer, making it easy to declare your way through a naturally evolving
 API landscape.

 Copyright © 2022 StepZen Inc. All Rights Reserved. 13

 A NEW APPROACH TO GRAPHQL FEDERATION

 About the Author
 Anant Jhingran is StepZen’s CEO and cofounder. Having spent time as IBM
 Fellow, CTO of IBM’s Information Management Division, CTO of Apigee, and
 product leader at Google Cloud, Anant’s career has been at the forefront of
 innovation in databases, machine learning, and APIs. He has worked on mission
 critical implementations with companies that range from startups to the Fortune
 100. At StepZen, Anant enjoys bringing these technologies together to help
 simplify, accelerate and scale a new era of API and data-driven development.

 .

 About StepZen
 A word about the StepZen team. We have delivered API software before (at
 Apigee and at Google), and have built databases like Db2, so we understand
 query execution and optimization very well. Our vision is to bring the two worlds
 together—to bring database techniques to the world of APIs. Our goal is to help
 developers build better GraphQL faster and to ensure successful
 implementations. Your GraphQL deploys and runs seamlessly on StepZen with
 built-in performance and reliability optimizations.

 We offer the StepZen product, and we offer free workshops on best practices for
 designing and implementing your system. Whether you are getting started or well
 on your journey building graphs or “graphs of graphs,” we’d love to connect and
 discuss your use cases .

 Copyright © 2022 StepZen Inc. All Rights Reserved. 14

